(a)) Use 1	Use the Aufbau principle to write the electron configuration of an atom of germanium					1.	
(b)) The	successive ionization	on energies o	rf germaniur	n are shown	in the follow	ving table:	
			1st	2nd	3rd	4th	5th	
	Io	nization energy / kJ mol ⁻¹	760	1540	3300	4390	8950	
	(i) (ii)	Write an equation measuring the sec	ium is meas	ured.	s, for the pro	ocess occurri		
	(iii)	Explain why the o						
							(Tota	al 5 mar

2.	(i)	Expl	ain why successive ionization energies of an element increase.	
		•••••		
				(1)
	(ii)	Expl energ	ain how successive ionization energies account for the existence of three main gy levels in the sodium atom.	
		•••••		
				(3)
			Г)	otal 4 marks)
3.	Expl	ain the	e following statements.	
	(a)	The	first ionization energy of sodium is	
		(i)	less than that of magnesium.	
				(2)
		(ii)	greater than that of potassium.	
				(1)

4.

						••••
						 (Total 5 m
	_		appear in the Da	ta Booklet.		
able 1 (Covalent (atom	nic) radii /10 ⁻¹²	<u> </u>	N	0	F
				70	66	58
Na	Mg	Al	Si	P	S 104	Cl
186	160	143	117	110	104	99
Table 2	Ionic radii/10	¹² m		3-3-	2-	
				N ³⁻ 171	O ²⁻ 146	F ⁻ 133
		Al^{3+}	Si ⁴⁺	P ³⁻	S^{2-}	Cl ⁻
No ⁺	$M\alpha^{2+}$	AI				181
Na ⁺ 98	Mg ²⁺ 65	45	42	212	190	101
98 Explain v	65 vhy	45	42	212 gnesium atom.	190	101
98 xplain v	65 vhy	45			190	
98 Explain v	65 vhy	45			190	

	there is a large increase in ionic radius from silicon to phosphorus.	thei	(11)	
(2)				
()				
	the ionic radius of Na ⁺ is less than that of F ⁻ .	the	(iii)	
(2) l 6 marks)	(Total	••••		
	(i) Define the term <i>ionization energy</i> .	(i)	(a)	5.
(2)				
	(ii) Write an equation, including state symbols, for the process occurring when measuring the first ionization energy of aluminium.	(ii)		
(1)				

	(b)	The first ionization energies of the elements are shown in Table 8 of the Data Booklet. Explain why the first ionization energy of magnesium is greater than that of sodium.	
			(2)
	(c)	Lithium reacts with water. Write an equation for the reaction and state two observation that could be made during the reaction.	ns
		(Tota	(3) al 8 marks)
6.	(a)	State the meaning of the term <i>electronegativity</i> .	
			(1)
	(b)	State and explain the trend in electronegativity across period 3 from Na to Cl.	
			(2)

	(c)	Explain why Cl_2 rather than Br_2 would react more vigorously with a solution of I^- .
		(2) (Total 5 marks)
7.		ribe the acid-base character of the oxides of the period 3 elements Na to Ar. For sodium and sulfur trioxide, write balanced equations to illustrate their acid-base character.
	•••••	
	•••••	
		(Total 4 marks)

•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	(Total 8 i
(i)	Explain how the first ionization energy of K compares with that of Na and Ar.
(i)	Explain how the first ionization energy of K compares with that of Na and Ar.
(i)	Explain how the first ionization energy of K compares with that of Na and Ar.
(i)	Explain how the first ionization energy of K compares with that of Na and Ar.
(i)	Explain how the first ionization energy of K compares with that of Na and Ar.
(i)	Explain how the first ionization energy of K compares with that of Na and Ar.
(i)	
(i)	

	(11)	Explain the difference between the first ionization energies of Na and Mg.	
			(4)
	(iii)	Suggest why much more energy is needed to remove an electron from Na^+ than from Mg^+ .	
		(Total 8 mark	(1) (s)
10.	Nitro	ogen is found in period 2 and group 15 of the periodic table.	
	(i)	Distinguish between the terms period and group.	
			1)

	(ii)	State the electron arrangement of nitrogen and explain why it is found in period 2 and group 15 of the periodic table.	
		(Total 4 ma	(3) arks)
11.		e 9 of the Data Booklet gives the atomic and ionic radii of elements. State and explain the rence between	
	(i)	the atomic radius of nitrogen and oxygen.	
			(2)
	(ii)	the atomic radius of nitrogen and phosphorus.	
			(1)

	(iii)	the atomic and ionic radius of nitrogen.	
		(Total 5 mar	(2) :ks)
12.	State	e and explain the trends in the atomic radius and the ionization energy	
	(i)	for the alkali metals Li to Cs.	
			(4)
			()
	(ii)	for the period 3 elements Na to Cl.	
			(4)
		(Total 8 man	'KS)

13.	(i)	Desc	cribe three similarities and one difference in the reactions of lithium and potassium w	ith water.
				(4)
	(ii)		e an equation for one of these reactions. Suggest a pH value for the resulting solution, give a reason for your answer.	
				(3)
			(Total 7	
14.	(a)	Class	sify each of the following oxides as acidic, basic or amphoteric.	
		(i)	aluminium oxide	
				(1)
		(ii)	sodium oxide	
				(1)

		(iii)	sulfur dioxide	
				(1)
	(b)	Write	e an equation for each reaction between water and	
		(i)	sodium oxide	
				(1)
		(ii)	sulfur dioxide.	
			(Total 5	(1) 5 marks)
15.	This		on is about Period 3 elements and their compounds. (type of bonding Topic 4) ain, in terms of their structure and bonding, why the element sulfur is a	
	(a)		conductor of electricity and aluminium is a good conductor of electricity.	
		•••••		
		••••••		
		•••••		
		•••••		
		•••••		(4)

	(b)	Explain, in terms of its structure and bonding, why silicon dioxide, SiO ₂ , has a high melting point.		
			(2) (Total 6 marks)	
16.	Expl	ain why		
	(i)	the first ionization energy of magnesium is lower than that of fluorine.	(2)	
	(ii)	magnesium has a higher melting point than sodium.	(3)	
			(Total 5 marks)	
17.	of or	uss the acid-base nature of the period 3 oxides. Write an equation to illustrate the ne of these oxides to produce an acid, and another equation of another of these oxuce a hydroxide.		

Paper 2 Topic 3

Info	rmation about the halogens appears in the Data Booklet.	
(i)	Explain why the ionic radius of chlorine is less than that of sulfur.	(2)
(ii)	Explain what is meant by the term <i>electronegativity</i> and explain why the electronegativity of chlorine is greater than that of bromine.	(3)
	(Total 5 m	arks)

19.	(a)	(i)	State the meaning of the term <i>electronegativity</i> and explain why the noble gases are not assigned electronegativity values.	(2)
		(ii)	State and explain the trend in electronegativity across period 3 from Na to Cl.	(2)
		(iii)	Explain why Cl_2 rather than Br_2 would react more vigorously with a solution of I^- .	(2)
	(b)		the acid-base properties of the following period 3 oxides. $MgO Al_2O_3 P_4O_6$ e equations to demonstrate the acid-base properties of each compound.	(7)
			(Total 13 ma	arks)
20.	(i)	Defin	ne the term ionization energy.	(1)
	(ii)	Write	e an equation for the reaction of lithium with water.	(1)
	(iii)	State	and explain the trend in the ionization energy of alkali metals down the group.	(3)

Paper 2 Topic 3

	(iv)	Explain why the electronegativity of phosphorus is greater than that of aluminium.	(2)
	(v)	Table 9 in the Data Booklet contains two values for the ionic radius of silicon. Explain, by reference to atomic structure and electron arrangements, why the two values are very different.	(4)
		(Total 11 m	arks)
21.		ain why sulfur has a lower first ionization energy than oxygen, and also a lower first ration energy than phosphorus. (Total 4 mag)	arks)

22.	With reference to the types of bonding present in period 3 elements:		
	(i)	explain why Mg has a higher melting point than Na.	(2)
	(ii)	explain why Si has a very high melting point.	(2)
	(iii)	explain why the other non-metal elements of period 3 have low melting points.	(2) (Total 6 marks)
23.		cribe the acid-base character of the oxides of the period 3 elements Na to Ar. For some and sulfur trioxide, write balanced equations to illustrate their acid-base character	