1.	The	diagra	m below (not to scale) represents some of the electron energy levels in the hydrogen atom.
			$n = \infty$
			$ \begin{array}{ccc} $
			n = 5
			n = 4
			n = 4
			n = 3
			n = 2
			n = 1
		(i)	Draw an arrow on the diagram to represent the electron transition for the ionization of hydrogen. Label this arrow A.
			(2)
		(ii)	Draw an arrow on the diagram to represent the lowest energy transition in the visible emission spectrum. Label this arrow B.
			(2) (Total 4 marks)
2.	Triti	um, ³	T, is an isotope of hydrogen.
	(i)		the number and type of sub-atomic particles in a tritium atom and the location of type.
		•••••	
			(2)

	(ii)	Write balanced equations to represent the formation of the following compoun with T_2 or T_2O .	ds, starting
		NT ₃ :	
		NaOT:	
		1401.	(1)
			(4) (Total 6 marks)
3.	(i)	State the full electron configuration for argon.	
			(1)
	(ii)	Give the formulas of two oppositely charged ions which have the same electro configuration as argon.	n
			(2) (Total 3 marks)
4.	State	e the number of protons, electrons and neutrons in the ion ${}^{15}_{7}$ N ³⁻ .	
	•••		
	•••		
	••••		(Total 2 marks)

Defi	ne the following terms.	
(i)	atomic number	
		(
(ii)	mass number	·
		(Total 2 mark
Iden	tify the numbers of protons, neutrons and electrons in the species ³³ S ²⁻ .	
•••••		(Total 1 mar
The	relative atomic mass of chlorine is 35.45. Calculate the percentage abundance of the	e two
	opes of chlorine, ³⁵ Cl and ³⁷ Cl in a sample of chlorine gas.	(Total 2 mark
	arally occurring copper has a relative atomic mass, (A_r) , of 63.55 and consists of two opes 63 Cu and 65 Cu.	,
(i)	Define the term relative atomic mass, $A_{\rm r}$.	
		•
		. (

	(ii)	State and explain which is the more abundant isotope.	
		(Total 2 ma	(1) arks)
9.	The	element vanadium has two isotopes, ${}^{50}_{23}\mathrm{V}$ and ${}^{51}_{23}\mathrm{V}$, and a relative atomic mass of 50.94.	
	(a)	Define the term isotope.	
			(1)
	(b)	State the number of protons, electrons and neutrons in $^{50}_{23}$ V.	
			(2)
	(c)	State and explain which is the more abundant isotope.	
			(1)
	(d)	State the name and the mass number of the isotope relative to which all atomic masses are measured.	()
		(Total 5 ma	(1) orks)

10.	(a)	State a physical property that is different for isotopes of an element.	
	(b)	Chlorine exists as two isotopes, ³⁵ Cl and ³⁷ Cl. The relative atomic mass of chlorine is	(1)
	(b)	35.45. Calculate the percentage abundance of each isotope.	
		(Tota	(2) al 3 marks)
11.	(a)	Define the term isotope.	
			(2)
	(b)	A sample of argon exists as a mixture of three isotopes.	
		mass number 36, relative abundance 0.337% mass number 38, relative abundance 0.0630% mass number 40, relative abundance 99.6%	
		Calculate the relative atomic mass of argon.	
			(2)

(Total 6 mark 12. (a) Define the term isotope. (b) A sample of gallium exists as two isotopes, ⁶⁹ Ga, relative abundance 61.2%, and ⁷¹ Ga, relative abundance 38.8%. Calculate the relative atomic mass of gallium. (Total 3 mark 13. (a) Evidence for the existence of energy levels in atoms is provided by line spectra. State how a line spectrum differs from a continuous spectrum.		(c)	State the number of electrons, protons and neutrons in the ion ⁵⁶ Fe ³⁺ .	
(b) A sample of gallium exists as two isotopes, ⁶⁹ Ga, relative abundance 61.2%, and ⁷¹ Ga, relative abundance 38.8%. Calculate the relative atomic mass of gallium. (Total 3 marks) (Total 3 marks) (B) On the diagram below draw four lines in the visible line spectrum of hydrogen.			electrons: protons: neutrons:	(2) (Total 6 marks)
relative abundance 38.8%. Calculate the relative atomic mass of gallium. (Total 3 mark) 13. (a) Evidence for the existence of energy levels in atoms is provided by line spectra. State how a line spectrum differs from a continuous spectrum. (b) On the diagram below draw four lines in the visible line spectrum of hydrogen.	12.	(a)	Define the term isotope.	 (2)
State how a line spectrum differs from a continuous spectrum. (b) On the diagram below draw four lines in the visible line spectrum of hydrogen.		(b)		(1) (Total 3 marks)
(b) On the diagram below draw four lines in the visible line spectrum of hydrogen.	13.	(a)	State how a line spectrum differs from a continuous spectrum.	
Low energy High energy		(b)	<u> </u>	(1)

	(c)	Expla	n how the formation of lines	indicates the preser	nce of energy levels.	
						 (1) (Total 3 marks)
14.			bromine exists as the isotope	s ⁷⁹ Br and ⁸¹ Br, and	l has a relative atomic m	ass of
	79.96 (a)		ete the following table to sho	ow the numbers of s	ub-atomic particles in th	e species
		SHOWI		an atom of ⁷⁹ Br	an ion of ⁸¹ Br	
			protons	an atom of Bi	an fon of Bi	
			neutrons			
			electrons			
	(b)	State a	and explain which of the two	isotopes ⁷⁹ Br and ⁸¹	Br is more common in t	he element
						(1)
	(c)	The el	ement calcium is in the same	period of the Perio	dic Table as bromine.	
		(i)	Write the electron arrangeme	ent for an atom of ca	alcium.	
		(ii)	Deduce the formula of the co	ompound calcium bi	omide.	(1)
						 (1) (Total 6 marks)

15.	(a)		the follo		of electromagnet	ic radiation in	order of incre	easing wavel	ength
		I.	Yello	w light					
		II.	Red li	ight					
		III.	Infrar	ed radiation	1				
		IV.	Ultrav	violet radiat	ion				
									(1
	<i>a</i> .	D: .:		1 .		1 1			
	(b)	Dıstı	nguish	between a c	continuous spectru	ım and a line s	pectrum.		
		•••••						•••••	
		•••••							
									(2
									•
	(c)	The thinning of the ozone layer increases the amount of UV-B radiation that reaches the Earth's surface.							
				Туре	of Radiation	Wav	elength / nm		
					UV-A		320–380		
					UV-B		290–320		
			d on the UV-A.	e informatio	on in the table abo	ve explain wh	y UV-B rays a	re more dan	gerous
		•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	••••••	
		•••••						(((Total 5 mark